

A hybrid flooding early warning system for small islands affected by tropical cyclones

Laura Cagigal, Beatriz Pérez-Díaz, Sara O. van Vloten, Alba Ricondo, Manuel Zornoza, Ana Rueda, Sonia Castanedo, Fernando Méndez

Study Area

- Samoa and Tonga are 2 out of the 58 Small Island Developing States (SIDS)
 - Low Computational Resources

-200

Introduction

Pacific Resilience Project (PREP I). Impact Forecasting Consultancy in Samoa and Tonga

TC Rainfall Inundation System {operational}

TESLA System climate

Seasonal Forecast Swells (operational)

TC Wind System (operational)

Isunami Inundation System {operational}

Multi-hazard Impact Forecast System {operational}

Multi-hazard Risk Assessment { climate }

Hybrid Models

Strengths:

- Fast prediction HR results
- Low computational resources
- Any climate (regular, extreme, TC)
- High Fidelity Numerical Models
- Probabilistic

Metamodel

Combination of High Fidelity Hydrodynamic Models + Data Science **Additive Model**

Linear summation of the physical processes + High Fidelity Hydrodynamic Models

UNCERTAINTY CONE

TC Inundation System

Wind forcing No wind forcing

Regional Waves

Real storm set-up

Stop-motion set-up

ShyTCWaves

TC track

ShyTCWaves

ShyTCWaves

Regional Waves

- 11.00

ShyTCWaves (van Vloten et al., Submitted)

TC Inundation System

Super-Point

Super-Point

7 days GFS-Wave Forecast, NOAA

Super-Point - Cagigal et al., 2021

TC Inundation System

BinWaves

ype of Hybrid model:	Additive Model
umerical model:	SWAN
umber of numerical simulations:	696
patial Resolution:	250m

Each point

 $U_p(f_i, \theta_j)$

Coefficients (Kp)

$$K_p(f_i, \theta_j) = \frac{U_p(f_i, \theta_j)}{\iint U(f_i, \theta_j) d_f d_{\theta}}$$

Cagigal et al., in prep.

Direction

-

5

20

-

-

1

1

-

-

BinWaves

2

-

-

A generic directional spectrum

 $S(f,\theta)$

Each point

$$Sp(f_i, \theta_j) = \sum_i \sum_j S(f_i, \theta_j) * K_p^2(f_i, \theta_j)$$

Frequency

1

1

-0

2

BinWaves

BinWaves

TC Inundation System

HyBeat

HyBeat Local Waves Wave SetUp + Infragravity Waves

Type of Hybrid model:MetamodelNumerical model:Xbeach - SurfBeatNumber of numerical simulations:100/MeshSpatial Resolution:~ 5/10 m

Pérez-Díaz et al., in prep.

HyBeat

High Resolution Wave SetUp + IG

TC Inundation System

Flood

Flooding Depths

Wave SetUp + Infragravity Waves Type of Hybrid model:MetamodelNumerical model:Lisflood - FPNumber of numerical simulations:50/TransectSpatial Resolution:5 m

HyFlood

TC Inundation System

Riskscape

\$

RiskScape

Open-source spatial data processing application used for multi-hazard risk analysis

Developed by NIWA, NZ

Exposure Layers and Damage Functions

Riskscape

Exposure layers and damage functions

Model to cross exposure and hazard layers

Thank you

laura.cagigal@unican.es https://geoocean.unican.es/

Validation-BinWaves

Validation-BinWaves

Validation-HyBeat

Validation-ShyTCWaves

TC OFA (1990)

Swath map

sqrt(Varia

180

Validation-ShyTCWaves

Longitudinal profiles

(*) IMOS satellite altimeter

Hs along profiles (Y-axis [0-20m])

Calibration dP = f(Pmin)

Validation-GreenSurge

20 30 Wind (m/s)

970 980 Presure (mbar) 990

SWATH Vortex Winds

SWATH Dynamic Wind SetUp

0.6 WL (m)

0.8

0.0 0.2 0.4

0.0 0.2 0.4 0.6 0.8 WL (m) 1.0

SWATH GreenSurge Wind SetUp

0.2 0.4

06 08 WL(m)

0.2 0.4 0.6 0.8 WL (m)

SWATH Storm Surge

SWATH Storm Surge

970 980 Presure (mbar)

Validation-GreenSurge

